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pressure for a cambered airfoil. However, note that A, and A, depend only on
the shape of the camber line and do not involve the angle of attack. Hence, from
Eq. (4.64), c,,../41s independent of . Thus, the quarter-chord point is the theoretical
location of the aerodynamic center for a cambered airfoil.

The location of the center of pressure can be obtained from Eq. (1.21):

!
_ MLE - Cm‘lec

Xep = I = (4.65)
Substituting Eq. (4.63) into (4.65), we obtain
c T
Xep =7 [1+";(A1—A2)] (4.66)

Equation (4.66) demonstrates that the center of pressure for a cambered airfoil
varies with the lift coefficient. Hence, as the angle of attack changes, the center
of pressure also changes. Indeed, as the lift approaches zero, x,,, moves toward
infinity; i.e., it leaves the airfoil. For this reason, the center of pressure is not
always a convenient point at which to draw the force system on an airfoil. Rather,
the force-and-moment system on an airfoil is more conveniently considered at
the aerodynamic center. (Return to Fig. 1.19 and the discussion at the end of
Sec. 1.6 for the referencing of the force-and-moment system on an airfoil.)

e |
hﬁ;xample,4.2.,4Consider an NACA 23012 airfoil. The mean camber line for this airfoil
is given by

z x\? x\? X x
—=2.6595 |i(z) —0.6075 (—) +0.1147 (—)] for 0<=~<=<0.2025
¢ &

c C C

z X X
and e 0.02208(1 ——) for 0.2025=-=<1.0
c c c

Calculate (a) the angle of attack at zero lift, (b) the lift coefficient when a =4°, (¢)
the moment coefficient about the quarter chord, and (d) the location of the center
of pressure in terms of x.,/c, when « =4° Compare the results with experimental
data.

Eolurtogg We will need dz/dx. From the given shape of the mean camber line, this
is

4

dz x\? x x
——== 6595 |t3(—) —l.215(-)+0.£147] for 0 =—=0.2025
dx c c '

d x
and 92002208  for 0.2025=>=1.0
dx ¢

Transforming from x to 6, where x =(c¢/2)}(1—cos 8), we have

dz 3 5
&—=2.6595 Z(l —2cos @+cos” 0)—0.6075(1—cos 8)+0.1147
X

or = 0.6840~2.3736 cos 8+ 1.995 cos® 6 for 0=606<0.9335rad
and = —0.02208 for 0.9335=0=n
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(a) From Eq. (4.61),
1 [™dz
Qo= ~—J ~—(cos 6—1)do
7 Jo dx

(Note: For simplicity, we have dropped the subscript zero from 8; in Eq. (4.61), 6,
is the variable of integration—it can just as well be symbolized as 6 for the variable
of integration.) Substituting the equation for dz/dx into Eq. (4.61), we have

1 0.9335
Qo= —— J (—0.6840+3.0576 cos 6 —4.3686 cos® 8 +1.995 cos® 6) do
o

]

1 T
—*""*J’ (0.02208 — 0.02208 cos 8) do (E.d)

T J0.9335

From a table of integrals, we see that

J cos 6 dé =sin 6
J cos® 8 df =3 sin 6 cos 6+46

J cos’® 0 d6 =1 sin 8(cos® 0+2)

_Hence, Eq. (E.1) becomes

1
;o= —~—[~2.86830+3.0576 sin € —2.1843 sin 6 cos &
‘i
+0.665 sin 6(cos* 8 +2)]3%**
1 .
- [0.022086 —0.02208 sin 6]q 9335

Hence,

1
@) _o=——(—0.0065+0.0665) = —0.0191 rad
w

or o —g=-—-1.09°

(b) & =4°=0.0698 rad
From Eq. (4.60),

(¢) The value of ¢,, .4 is obtained from Eq. (4.64). For this, we need the two Fourier
coefficients, A, and A,. From Eq. (4.51),

2{7d
Alzmj “{COSQdB
T ) dx
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2 0.9335
A== j (0.6840 cos 8 —2.3736 cos? 6+1.995 cos® §) d6
{

)

3

2 ™
+= J (—0.02208 cos 6) df

T J0.9335

2
== [0.6840 sin 8 — 1.1868 sin 6 cos 6 —1.18686 +0.665 sin #(cos’ 0 +2)15"**
o

2
+—[—0.02208 sin 8]7 135
T

2
=2 (0.1322+0.0177) = 0.0954
au

From Eq. (4.51),

217d 2 (™d
Azm-—J‘ —jcos 29d8:f-j —E(zcoszt?-ﬂl)de
T dx

mJo dx 0

2 0.9335
=— J. (—0.6840+2.3736 cos 6 —0.627 cos” 8
ar

4]

—4.747 cos® 8 +3.99 cos* 8) db

2 ks
$— J (0.02208 — 0.0446 cos” 6) dé

T J0.9335
Note:
4 L 8. -
cos Bd6=zc05‘ 6 sin 6+§(sm B cos 6+ 8)

Thus,

2 ; 1% .
Ay,=— {—0.68406 +2.3736sin 8 —0.628 (5) (sin @ cos 6+ )

m

1 1 3 0.9335
—4.747 (3«) sin #(cos> §+2)+3.99 [Z cos” sin 8 +§ (sin 8 cos 6+ 9)]}
0

™

0.9335

2 1
S e [0.022086 - 0.0446 (5) (sin 6 cos 6 + G)il
T

2
=2 (0.11384+0.01056) = 0.0792
w

From Eq. (4.64),

cm,(‘/a e 'TIT (Az = A1) = %T (00792 —_ 00954)

cm,r/d- = _0.01 27
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(d) From Eq. (4.66),
c T
cp — 1+_ A +A’J
Ter 4 [ & W ,)]

Hence,

@—E[H T _(0.0954 00792}}—0273
c 4l 0559 ‘ IS

COMPARISON WITH EXPERIMENTAL DATA. The data for the NACA 23012
airfoil are shown in Fig. 4.22. From this, we make the following tabulation:

Calculated Experiment
@ ~1.09° =1.1°
¢ (at a =4°) 0.559 0.55
Cinira -0.0127 -0.01

Note that the results from thin airfoil theory for a cambered airfoil agree very
well with the experimental data. Recall that excellent agreement between thin
airfoil theory for a symmetric airfoil and experimental data has already been
shown in Fig. 4.20. Hence, all of the work we have done in this section to develop
thin airfoil theory is certainly worth the effort. Moreover, this illustrates that the
development of thin airfoil theory in the early 1900s was a crowning achievement
in the theoretical aerodynamics and validates the mathematical approach of
replacing the chord line of the airfoil with a vortex sheet, with the flow tangency
condition evaluated along the mean camber line.

This brings to an end our introduction to classical thin airfoil theory.
Returning to our road map in Fig. 4.2, we have now completed the right-hand
branch.

4.9 LIFTING FLOWS OVER ARBITRARY
BODIES: THE VORTEX PANEL
NUMERICAL METHOD

The thin airfoil theory described in Secs. 4.7 and 4.8 is just what it says—it
applies only to thin airfoils at small angles of attack. (Make certain that you
understand exactly where in the development of thin airfoil theory these assump-
tions are made and the reasons for making them.) The advantage of thin airfoil
theory is that closed-form expressions are obtained for the aerodynamic
coefficients. Moreover, the results compare favorably with experimental data for
airfoils of about 12 percent thickness or less. However, the airfoils on many
low-speed airplanes are thicker than 12 percent. Moreover, we are frequently
interested in high angles of attack, such as occur during takeoff and landing.




